Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper defines a new practical construction for a code-based signature scheme. We introduce a new protocol that is designed to follow the recent paradigm known as “Sigma protocol with helper”, and prove that the protocol’s security reduces directly to the Syndrome Decoding Problem. The protocol is then converted to a full-fledged signature scheme via a sequence of generic steps that include: removing the role of the helper; incorporating a variety of protocol optimizations (using e.g., Merkle trees); applying the Fiat–Shamir transformation. The resulting signature scheme is EUF-CMA secure in the QROM, with the following advantages: (a) Security relies on only minimal assumptions and is backed by a long-studied NP-complete problem; (b) the trusted setup structure allows for obtaining an arbitrarily small soundness error. This minimizes the required number of repetitions, thus alleviating a major bottleneck associated with Fiat–Shamir schemes. We outline an initial performance estimation to confirm that our scheme is competitive with respect to existing solutions of similar type.more » « less
-
Abstract Structured linear block codes such as cyclic, quasi-cyclic and quasi-dyadic codes have gained an increasing role in recent years both in the context of error control and in that of code-based cryptography. Some well known families of structured linear block codes have been separately and intensively studied, without searching for possible bridges between them. In this article, we start from well known examples of this type and generalize them into a wider class of codes that we call ℱ-reproducible codes. Some families of ℱ-reproducible codes have the property that they can be entirely generated from a small number of signature vectors, and consequently admit matrices that can be described in a very compact way. We denote these codes as compactly reproducible codes and show that they encompass known families of compactly describable codes such as quasi-cyclic and quasi-dyadic codes. We then consider some cryptographic applications of codes of this type and show that their use can be advantageous for hindering some current attacks against cryptosystems relying on structured codes. This suggests that the general framework we introduce may enable future developments of code-based cryptography.more » « less
An official website of the United States government

Full Text Available